Control and Stabilization of the Benjamin-Ono Equation on a Periodic Domain
نویسندگان
چکیده
It was proved by Linares and Ortega in [24] that the linearized Benjamin-Ono equation posed on a periodic domain T with a distributed control supported on an arbitrary subdomain is exactly controllable and exponentially stabilizable. The aim of this paper is to extend those results to the full Benjamin-Ono equation. A feedback law in the form of a localized damping is incorporated in the equation. A smoothing effect established with the aid of a propagation of regularity property is used to prove the semi-global stabilization in L(T) of weak solutions obtained by the method of vanishing viscosity. The local well-posedness and the local exponential stability in H(T) are also established for s > 1/2 by using the contraction mapping theorem. Finally, the local exact controllability is derived in H(T) for s > 1/2 by combining the above feedback law with some open loop control.
منابع مشابه
On the Controllability and Stabilization of the Linearized Benjamin-ono Equation
In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation suc...
متن کاملSolitons And Periodic Solutions To The Generalized Zakharov-Kuznetsov Benjamin-Bona-Mahoney Equation
This paper studies the generalized version of theZakharov-Kuznetsov Benjamin-Bona-Mahoney equation. The functionalvariable method as well as the simplest equation method areapplied to obtain solitons and singular periodic solutions to theequation. There are several constraint conditions that arenaturally revealed in order for these specialized type ofsolutions to exist. The results of this pape...
متن کاملApplication of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation
In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...
متن کاملForced oscillations of a damped Korteweg-de Vries equation on a periodic domain
In this paper, we investigate a damped Korteweg-de Vries equation with forcing on a periodic domain $mathbb{T}=mathbb{R}/(2pimathbb{Z})$. We can obtain that if the forcing is periodic with small amplitude, then the solution becomes eventually time-periodic.
متن کاملSharp ill-posedness result for the periodic Benjamin-Ono equation
We prove the discontinuity for the weak L(T)-topology of the flowmap associated with the periodic Benjamin-Ono equation. This ensures that this equation is ill-posed in Hs(T) as soon as s < 0 and thus completes exactly the well-posedness result obtained in [12]. AMS Subject Classification : 35B20, 35Q53.
متن کامل